Radiative Forcing Calculations for CH₃Cl and CH₃Br Allen S. Grossman Keith E. Grant Global Climate Research Division, L-262 Lawrence Livermore National Laboratory P.O. 808, Livermore, CA 94551 > William E. Blass Dept. of Physics and Astronomy University of Tennessee Knoxville, TN 37996-1200 Donald J. Wuebbles Dept. of Atmospheric Sciences University of Illinois Urbana, Il 61801 January 1996 ## **Abstract** Methyl chloride, CH₃Cl, and methyl bromide, CH₃Br, are particularly important in the global atmosphere as major natural sources of chlorine and bromine to the stratosphere. We will estimate the radiative forcing and Global Warming Potentials (GWPs) of CH₃Cl and CH₃Br. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm. Radiative forcing values of 0.0047 W/m² per ppbv for CH₃Cl in the troposphere and 0.0049 W/m² per ppbv for CH₃Br in the troposphere were obtained. The radiative forcing values are about 2 percent of the forcing of CFC-11 and about 270 times the forcing of CO₂, on a per molecule basis. The Global Warming Potentials of CH₃Cl and CH₃Br were determined giving GWPs of about 8 for CH₃Cl and about 4 for CH₃Br for a time integration of 100 years (CO₂ = 1). The results indicate that while CH₃Cl andCH₃Br have direct GWPs similar to that of CH₄, the current emission rates are too low to meaningfully contribute to atmospheric greenhouse heating effects. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.